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Abstract The thin-shell wormhole created using the
Darmois–Israel formalism applied to Robinson–Trautman
family of spacetimes is presented. The stress energy ten-
sor created on the throat is interpreted in terms of two dust
streams and it is shown that asymptotically this wormhole
settles to the Schwarzschild wormhole with a throat located
at the position of the horizon. This behavior shows a nonlinear
stability (within the Robinson–Trautman class) of this spheri-
cally symmetric wormhole. The gravitational radiation emit-
ted by the Robinson–Trautman wormhole during the tran-
sition to spherical symmetry is indistinguishable from that
of the corresponding black hole Robinson–Trautman space-
time. Subsequently, we show that the higher-dimensional
generalization of Robinson–Trautman geometry offers a pos-
sibility of constructing wormholes without the need to violate
the energy conditions for matter induced on the throat.

1 Introduction

Robinson–Trautman spacetimes, distinguished by the pres-
ence of expanding, nontwisting and nonshearing null geod-
esic congruence [1–4], found numerous uses in studies on
nonspherical generalizations of black holes (albeit nonro-
tating ones only). This class of geometries contains many
important solutions as a special case, e.g. Schwarzschild and
Vaidya solutions or C-metric. This family is also in general
without any symmetries and provides dynamical spacetimes
with exact gravitational waves emanating from a compact
region. As such it provides grounds for studies of exact solu-
tions beyond spherical or axial symmetry – testing the robust-
ness of properties derived in the symmetric cases and their
stability with respect to nonlinear perturbations within this
class.

a e-mail: ota@matfyz.cz
b e-mail: tahamtan@utf.mff.cuni.cz

Wormholes represent one of the more peculiar predictions
of general relativity when the energy conditions are relaxed
or other more exotic options invoked. They have a relatively
long history [5,6] and provide an attractive tool for under-
standing the general relativity [7]. Soon after initial consider-
ations other simple models appeared – e.g. polyhedral worm-
holes [8] (where the unavoidable energy condition violation
is concentrated on the edges) or Reissner–Nordström worm-
hole [9]. The energy conditions violations for wormholes
were investigated [10] based on similar studies regarding
curvature singularities [11] and it was realized that although
one may shift the energy violation region in space and/or time
and there may exist geodesics passing through the wormhole
completely avoiding this problematic region the energy con-
dition violation is unavoidable [12]. However, recently the
possibility to form a wormhole using only a NUT charge and
a nonlinear sigma model matter on an anti-de Sitter back-
ground was noted [13].

There are generally two categories of wormholes, both of
them covered in the book dedicated to the subject [14]. In
the first one, the asymptotic regions are connected smoothly
together via a “bridge” and the corresponding metric is reg-
ular everywhere. The matter content is smoothly distributed
(usually in the neighborhood of the throat) and on average
does not satisfy energy conditions. Here, the exact position
of a throat has to be determined in a way similar to quasilo-
cal horizons – as an anti-trapped surface [15] or other closely
related concepts [16,17]. In the second case, the wormhole
is created by cutting and gluing existing regular spacetimes.
These so-called thin-shell wormholes have a well-defined
throat due to the process of creation. On such a throat a dis-
tributional source is created which does not satisfy energy
conditions in order to provide us with a transition from the
collapsing region to the expanding one. There are studies
of thin-shell wormholes in spherical symmetry – static [18]
or dynamical [19] (see as well numerous references therein),
cylindrical symmetry [20] or in higher dimensions [21]. Both
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concepts of wormholes were used widely in various scenar-
ios, mainly looking for a model with the least violation of
energy conditions or studying the stability of wormholes.

The stability of thin-shell wormholes was mainly stud-
ied using linearization combined with the effective potential
method [18,22,23] and its generalizations, e.g. [24]. Majority
of these studies considered highly symmetric (spherical) sit-
uations (and the perturbations were usually limited to purely
radial as well). Specifically, there are many linear stability
results for a thin-shell wormhole in the Schwarzschild geom-
etry [25] (and the references therein) but the present paper
offers a first results based on a class of exact solutions with-
out any symmetries thus offering a full nonlinear treatment
of the problem. The selected Robinson–Trautman class of
spacetimes contains reasonably general (albeit rotationless)
deformations of Schwarzschild geometry, which makes it
an ideal tool for stability analysis of spherically symmetric
wormholes without the need to select among several methods
for investigating the linear stability. Moreover, this class of
spacetimes contains gravitational waves as well.

The thin-shell wormhole construction is based on the
Darmois–Israel formalism [26–28] which is widely used in
the context of relativistic sources and became part of stan-
dard computational tools [29]. In the following, we will
apply it to the Robinson–Trautman family of spacetimes. The
main analytical results concerning this family are related to
the dynamical evolution towards final spherically symmetric
Schwarzschild geometry which is attained exponentially fast
(in retarded time) in the most interesting type II subfamily
in vacuum – a result obtained by Chruściel and Singleton
[30–32]. This result is based on the parabolic type equation
(the Robinson–Trautman equation – the only nontrivial Ein-
stein equation for this class in vacuum) governing the evo-
lution from initial data which gives a well-defined solution
to the future – analogously to the heat equation (this means
that extending the solution to infinite negative retarded time
is generally impossible). These results were later general-
ized to nonvanishing cosmological constant [33,34] – solu-
tions settle down to a Schwarzschild–(anti-)de Sitter – and
to pure radiation source [35,36] – solutions approach the
spherically symmetric Vaidya metric. In the standard setting
of Robinson–Trautman solution (retarded time version) the
location of a past horizon together with its general existence
and uniqueness for the vacuum Robinson–Trautman solu-
tions has been studied by Tod [37]. Later, Chow and Lun [38]
analyzed other properties of this horizon and made numerical
study of both the equation for the horizon and the Robinson–
Trautman equation. These results were later extended to non-
vanishing cosmological constant [39]. The existence of the
horizon together with its nature was studied in the higher-
dimensional generalization of Robinson–Trautman space-
times [40]. The deformed horizon in Robinson–Trautman
spacetime and its associated asymptotic momentum caused

by directional gravitational radiation emission was also used
in the analytic explanation of an “antikick” appearing in
numerical models of asymmetric binary black hole mergers
[41]. Apart from the Maxwellian electrodynamics one can
couple the Robinson–Trautman geometry to several models
of nonlinear electrodynamics [42].

Recently, the metric form of the Robinson–Trautman
spacetimes was amended in such a way that it admits more
general types of matter. Namely, there is a solution contain-
ing free massless scalar field [43] which was later shown to
include many important spherically symmetric scalar field
spacetimes [44]. The ghost field (scalar field with negative
kinetic term in the Lagrangian) version of the spacetime was
investigated as well and it was shown that it contains a worm-
hole throat existing for a finite time [44]. This is an example
of a bridge-type wormhole with regular geometry and matter.

The higher-dimensional generalization of Robinson–
Trautman spacetimes [45] presents an opportunity to study
compact wormhole throats with less geometrical restrictions
(compared to automatic S2 topology in four dimensions)
similarly to the case of black holes in higher dimensions.
Thin-shell wormholes in higher dimensions were already
employed in various scenarios [46,47]. In Sect. 8 we will
show that the possibility to have compact Einstein manifolds
with nonpositive curvature allows us to construct wormholes
without the need for matter of negative energy density using
the higher-dimensional Robinson–Trautman solution.

The investigation presented below is as well quite a timely
one since according to Ref. [48] the early ringdown phase
emission of gravitational waves detected recently [49] does
not hold enough data to reliably distinguish between true
black hole signal and that of some other potential compact
source even-though later the quasinormal modes differ drasti-
cally. Since our model describes a fully nonlinear dynamical
transition of a compact object (a wormhole – case considered
in [48] as well) to the final stationary phase it represents an
example of such a process treatable nonperturbatively.

2 Vacuum Robinson–Trautman metric and field
equations

The general form of a vacuum Robinson–Trautman space-
time (with cosmological constant) has the following form
implementing the twistfree and shearfree conditions [1–4]:

ds2 = −2H du2 − 2 du dr + r2

P2 (dy2 + dx2), (1)

where 2H = Δ( ln P) − 2r( ln P),u − 2m/r − (Λ/3)r2,

Δ ≡ P2(∂xx + ∂yy), (2)

and Λ is the cosmological constant. The geometry is speci-
fied by two functions, P(u, x, y) and m(u) , satisfying the

123



Eur. Phys. J. C   (2018) 78:167 Page 3 of 10  167 

nonlinear Robinson–Trautman equation (the only nontrivial
Einstein equation remaining)

ΔΔ( ln P) + 12m( ln P),u − 4m,u = 0. (3)

The function m(u) might be set to a constant by suitable
coordinate transformation for vacuum solution which makes
its interpretation as a quantity related to the mass problematic.
However, it appears in formula for the Bondi mass of the
spacetime together with the function P .

The spacetime is defined as possessing a geodesic, shear-
free, twistfree and expanding null congruence. In the case of
the metric (1) this congruence is generated by l = ∂r . The
coordinate r is clearly an affine parameter along this con-
gruence, while u is a retarded time coordinate, spatial coor-
dinates x, y span transversal 2-spaces with their Gaussian
curvature (for r = 1) being given by

K (u, x, y) ≡ Δ( ln P). (4)

We assume that the transversal 2-spaces are compact (leading
necessarily to the spherical topology) which is the standard
view of this family of spacetimes. For general fixed values of
r and u, the Gaussian curvature is K/r2 so that, as r → ∞,
the transversal 2-spaces become effectively locally flat.

3 Wormhole setup

In this section we consider gluing together two identical
copies of the asymptotic part of Robinson–Trautman space-
time (mirror-like setup) along hypersurface r = f (u) whose
spatial sections are necessarily compact. However, since the
geometry of these sections together with their evolution in
retarded time is specified by metric function P they are not
simply spheres and evolve nontrivially. This enables us to
study quite general wormhole throat while retaining clear
geometrical picture and simple description. The wormhole
throat should be above the horizon which is unfortunately
impossible to localize precisely in general. However, while
proving the existence of horizons (generally with cosmolog-
ical constant) the bounds on the position of the horizon were
presented in [39]. Here we assume that the cut is above the
upper bound on horizon location which is given by the min-
imum of Gaussian curvature (if Λ = 0, as we will assume in
the following) as 2m/Kmin (note that Kmin = 1 for spherical
symmetry – Schwarzschild horizon).

While having specified the gluing in a way that the induced
metric is automatically identical from both sides of the throat
we have to check what kind of matter got induced on the
throat by a potential discontinuity in derivatives. In order to
do that, we have to compute extrinsic curvature on the throat
(essentially from both sides but here we have a symmetric
situation) to derive the induced stress energy tensor according
to standard Darmois–Israel formalism [26–28].

Denoting the normal to the hypersurface by na we have
the induced metric on the throat [50,51]

hab = gab − nanb (5)

and the extrinsic curvature

Kab = hcah
d
b∇cnd . (6)

Using the quantities relevant to our case, namely the metric
(1), we have the following form of the normal to the throat:

na = (−ε f,u, ε, 0, 0).

From nana = 1 one obtains the normalization factor ε =
(2H + 2 f,u)−1/2. From the definition (5) one obtains an
induced metric on the throat (when expressed in the full
spacetime coordinates it is necessarily degenerate)

habdxadxb = −
(

2H+ε2 f 2
,u

)
du2−2

(
1−ε2 f 2

,u

)
du dr

+ f 2

P2 (dy2 + dx2) − ε2 dr2. (7)

Using the definition (6) one can straightforwardly compute
Kab but since the expression for the whole tensor is quite
large we first introduce the following 3-dimensional frame:

∂τ = ε ∂u + ε f,u∂r , ∂x , ∂y (8)

adapted to the throat (removing the trivial orthogonal direc-
tion and passing from 4-dimensional Latin to 3-dimensional
Greek indices). The first frame vector is the four-velocity of
a static observer on the throat. In this frame on the throat of
the wormhole the induced metric takes a simple form

hμνdxμdxν = −dτ 2 + f 2

P2 (dy2 + dx2). (9)

However, generally one cannot integrate the coordinate τ

(proper time of an observer sitting at the fixed position on the
throat) so in (8) one should not understand ∂τ as a coordinate
vector but only as a handy notation for a frame vector (and dτ

for a corresponding covector). This, of course, means that we
cannot transform the u-dependence into the τ -dependence in
the metric functions even on the throat. If we would retain
the u coordinate for the throat description we will obtain the
induced metric

− 1

ε2 du2 + f 2

P2 (dy2 + dx2). (10)

In the following we will adopt a hybrid approach by retaining
the frame (8) which has cleaner physical interpretation while
using the coordinate u for expressing the individual frame
components of tensorial objects.

Using this strategy we compute the frame components of
the extrinsic curvature,

Kμν = Kab ∂aμ ∂bν (11)
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where ∂aμ denotes components of the μth vector of our new
frame expressed in the original vector basis corresponding to
the original coordinates of the full spacetime. Thus we obtain
the following nonzero components of the extrinsic curvature
(6):

Kττ = − 1

2
√

2

(
3H,r f,u + 2HH,r + H,u + f,uu

)

(H + f,u)
3
2

∣∣∣∣
r= f (u)

Kτ x = Kxτ = −1

2

H,x

H + f,u

∣∣∣∣
r= f (u)

Kτ y = Kyτ = −1

2

H,y

H + f,u

∣∣∣∣
r= f (u)

Kxx = Kyy = r

P2
√

2

(
f,u + 2H + r P,u

P

)
√
H + f,u

∣∣∣∣
r= f (u)

.

(12)

Obviously we need to satisfy

H + f,u > 0 (13)

because of the square root in the first and last equation of (12).
Let us determine the sign ofKxx , which will be important for
the following. Its sign is determined by the sign of the bracket
in the nominator (see (12)). Considering (13), the explicit
form of H and a natural assumption r > 0 ⇒ f (u) > 0 the
sign of Kxx depends on the value of the quantity

K

2
− m

f
(14)

where K = Δ( ln P). From already mentioned bounds on
position of the horizon [39] combined with our decision to
prevent the wormhole throat from getting below horizon (the
last inequality)

2m

Kmax
≤ rhorizon ≤ 2m

Kmin
≤ f (15)

we derive the following inequality:

K

2
− m

f
≥ K

2
− Kmin

2

where the right side is always nonnegative so

K

2
− m

f
≥ 0. (16)

This means thatKxx is positive which will become important
while discussing the stress energy tensor later on.

4 Surface stress energy

Now we will present the resulting stress energy tensor Sμν

(greek indices enumerate the adapted frame vectors (8) or
covectors, as opposed to full spacetime indices denoted by

latin letters) induced on the throat hypersurface according to
Darmois–Israel formalism

8π Sμν = tr [K]hμν − [Kμν] (17)

which gives the following nonzero components in the frame
adapted to the throat:

Sττ = −4P2

f 2 Kxx

Sτ x = −2Kτ x

Sτ y = −2Kτ y

Sxx = Syy = 2Kxx − 2 f 2

P2 Kττ .

(18)

Note that the Darmois–Israel formalism automatically
ensures that the stress energy tensor is conserved. The main
complication when deriving thin-shell wormhole is con-
nected with interpreting the resulting stress energy tensor
in terms of some reasonable matter localised on the worm-
hole throat. We will try to give the interpretation in terms of
two perfect fluid streams with stress energy tensor generally
having the following form:

Tμν =
2∑

i=1

[(ρi + pi )viμviν + pi hμν]. (19)

The explicit components are then (we consider dust for sim-
plicity – pi = 0)

Tττ = ρ1v
2
1τ + ρ2v

2
2τ

Tτ x = ρ1v1τ v1x + ρ2v2τ v2x

Tτ y = ρ1v1τ v1y + ρ2v2τ v2y

Txx = ρ1v
2
1x + ρ2v

2
2x

Tyy = ρ1v
2
1y + ρ2v

2
2y

Txy = ρ1v1xv1y + ρ2v2xv2y

(20)

and we assume velocity normalization for both streams (there
is no summation over i)

vτ
i viτ + vxi vi x + v

y
i viy = −1. (21)

Since we need Txx = Tyy and Txy = 0 according to (18) we
obtain

v1xv2x = −v1yv2y, ρ2 = ρ1
v2

1y

v2
2x

(22)

Looking at the form of (20) we immediately realize that com-
ponents of fluid stress energy tensor satisfy the following
relation:

(Tτ x )
2 + (Tτ y)

2 = TττTxx (23)
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which in turn limits our wormhole parameters via the follow-
ing constraint:

(Kτ x )
2 + (Kτ y)

2 = 2Kxx

(
Kττ − P2

f 2 Kxx

)
(24)

which (for a fixed geometry) determines the evolution of the
function f .

5 Asymptotic behavior and stability

As mentioned in the introduction, Robinson–Trautman
spacetimes asymptotically approach the corresponding
spherically symmetric members of the family. Since our
wormhole solution is generated using the Robinson–Traut-
man geometry it must satisfy (away from the throat) the Ein-
stein equations which reduce to the single equation (3) where
we can assume m = const. without loss of generality. This
equation was analyzed by Chruściel and Singleton [30–32]
to obtain asymptotic form of function P(u, x, y) for smooth
initial data on the hypersurface u = const., which determines
the geometry. In our case with Λ = 0 and without null radi-
ation field the final state corresponds to the Schwarzschild
metric. Cutting the spacetime to obtain a wormhole does not
change the asymptotic behavior since the geometry is essen-
tially fixed in the r direction. Thus having established the
behavior far from the throat one can extend the solution up
to the wormhole throat uniquely provided one stays in the
Robinson–Trautman family.

Now, we will investigate what are the consequences of the
asymptotic behavior of Robinson–Trautman solutions for our
wormhole. Specifically, the Chruściel’s analysis considered
the following form of the function P:

P = p(u, x, y) P0, (25)

with P0 = 1 + 1
4 (x2 + y2) corresponding to spherical sym-

metry (with Gaussian curvature Δ ln P0 = 1). Using this
form in Eq. (3), while assuming m(u) = const (which is
always possible to arrange by a suitable coordinate transfor-
mation preserving the form of metric) he was able to prove
the following asymptotic behavior of p for large values of u:

p =
∑
i, j≥0

pi, j u
j e−2iu/m

= 1 + p1,0 e
−2u/m + p2,0 e

−4u/m + · · · + p14,0 e
−28u/m

+ p15,1 u e
−30u/m + p15,0 e

−30u/m + · · · , (26)

where pi, j are smooth functions of the spatial coordinates
x, y, which encode for the deviations from spherical symme-
try. For large retarded times u, the function P given by (25)
approaches P0 exponentially fast and the whole solution thus
settles to spherical symmetry (Schwarzschild geometry). The
u = ∞ hypersurface then corresponds to the future horizon

Fig. 1 Schematic Penrose conformal diagram of Robinson–Trautman
spacetime (the shaded portion) which exists for any smooth initial
data given on u0. For u → ∞ it approaches the spherically symmet-
ric Schwarzschild solution by emitting gravitational radiation towards
future null infinity, and can be extended through the future event hori-
zon EH to the interior Schwarzschild solution and the other asymptotic
region (the white portion). The curvature singularities are at r = 0, thick
lines represent future and past null infinities I+ and I−. The white hole
is localized by a trapping (apparent) horizon T H indicated by dotted
line. The wormhole throatWH (dashed line) sits above this horizon and
asymptotically approaches the future Schwarzschild horizon at u = ∞.
In the wormhole case only the portion of the diagram to the right from
the throat (dashed line) is applicable and is glued to its copy along the
dashed line

of Schwarzschild black hole and one can attach the inner
Schwarzschild solution and the complementary asymptotic
region there (see Fig. 1).

The above described form of P (25) leads to the following
expression for H,x , which determines the asymptotic behav-
ior of Kxτ (see (12)):

H,x =
[

1

2
Δ ln p − r(ln p),u

]

,x
. (27)

Using Eq. (26) one can see that even the dominant term of
H,x has an exponential falloff. The same applies to H,y , of
course, while the remaining components of extrinsic curva-
ture appearing in (12) do not vanish asymptotically. So in
order to analyze the asymptotic form of the constraint (24)
we can put Kτ x = 0 and Kτ y = 0 to obtain

Kττ − P2

f 2 Kxx = 0. (28)

After substituting the asymptotic expansion for P given
by (25) and (26) into expressions for Kττ and Kxx given in
(12) and keeping only the terms that are not exponentially
suppressed in (28) (effectively using H ∼ 1/2 − m/ f and
P ∼ P0 – corresponding to Schwarzschild asymptotic limit)
one arrives at the following equation:

f 3 f,uu + 2 f 2 f 2
,u + ( f − m)(3 f f,u + f − 2m) = 0. (29)

And since at u ∼ ∞ we are essentially in the static regime
(because of the exponentially fast suppression of the dynamic

123



 167 Page 6 of 10 Eur. Phys. J. C   (2018) 78:167 

evolution) we can put f (u) = f0 = const as a first rough
approximation leading to f0 = 2m. In other words, the
wormhole asymptotically settles onto the position of a hori-
zon of the final Schwarzschild geometry although initially it
was set up to be in general above it.

If we use just an approximation where we assume the quar-
tic terms f 3 f,uu and f 2 f 2

,u in Eq. (29) to be small compared
to remaining lower order terms, we have

( f − m)(3 f f,u + f − 2m) = 0. (30)

In this situation we obtain the following solution (we dis-
regard the solution f = m, which is definitely below the
horizon in the asymptotic region):

f (u) = 2m {LambertW(z(u)) + 1}
in which

z(u) = 1

2m
exp

(
−u + C1

6m
− 1

)
.

An expansion for the special function LambertW(z(u))

(specifically its principal branch according to [52]) when z
is approaching zero (corresponding to u → ∞) is given by
[52]

z − z2 + 3

2
z3 − · · ·

which shows again that the asymptotic value is f = 2m and
that going slightly away from u = ∞ moves the throat posi-
tion f above 2m (the position of the Schwarzschild horizon).
So we have checked that the horizon really approaches the
static value from above in this approximation and we can
schematically represent the possible throat position in Fig. 1.

The above results can be used to establish a nonlinear
stability of the final Schwarzschild wormhole with respect to
its nonlinear deformations within the Robinson–Trautman
class. Namely, if we deform it even far away from spherical
symmetry while keeping the throat above the corresponding
position of the horizon it will settle back exponentially fast to
a spherically symmetric wormhole by radiating away all the
deformations in the form of gravitational radiation (encoded
in the Weyl scalar Ψ4 (A.2) displayed in the appendix). The
linear stability analysis of a Schwarzschild wormhole using
radial perturbations was extended up to 2m only recently
[25].

6 Specific values of fluid parameters

Here we give values of the parameters for the two streams.
First for general mutual stream directions, then for one of
the streams being static, and finally for the specific case of
perpendicular streams.

6.1 General streams

Velocity components are determined in terms of the time
component of the second stream. Then the first component
of the first stream velocity becomes

v1τ =
√

β2v2
2τ − (

v2
2τ − 1

)

β2
(
2 v2

2τ − 1
) − (

v2
2τ − 1

) (31)

in which

β2 = f 2Kττ − P2 Kxx

2 P2 Kxx
.

One can check from (24) that β2 is indeed positive. Since v1τ

and v2τ are bigger than 1 then, according to (21), we obtain
the following restriction on β when using (31):

β2 <
v2

2τ − 1

2v2
2τ − 1

.

The spatial components have the following form:

v1x = f 2

2P2Kxx

1√
v2

2τ −1
β2 −(

2v2
2τ − 1

)
[
v2τ Kτ y − α2 Kτ x

]
,

v2x = f 2

2P2Kxx

[
v2τ Kτ x + α2 Kτ y

]
,

v1y = − f 2

2P2Kxx

1√
v2

2τ −1
β2 −(

2v2
2τ − 1

)
[
v2τ Kτ x + α2 Kτ y

]
,

v2y = f 2

2P2Kxx

[
v2τ Kτ y − α2 Kτ x

]
, (32)

in which

α2 =
√

v2
2τ − 1

β2 − v2
2τ .

The densities can be expressed in the following way:

ρ1 = −4P2Kxx

f 2

[(
v2

2τ − 1
) − β2

(
2 v2

2τ − 1
)

v2
2τ − 1

]
,

ρ2 = −4P2 β2

f 2

Kxx

v2
2τ − 1

, (33)

and their sign is completely determined by the sign of Kxx .
As discussed after Eq. (16)Kxx is positive and therefore both
densities are negative as expected for a viable wormhole.

6.2 Static stream

Since the time component of the second stream velocity fea-
tures as a parameter for expressing the rest of the quantities
we wish to explore its most prominent value corresponding to
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the second stream being static with respect to the selected nat-
ural frame on the wormhole throat. This means that the sec-
ond fluid is comoving with the static observer on the throat.
In the limit when v2τ −→ 1 we obtain

ρ1 = −4P2Kxx

f 2

[
1 − lim

v2τ →1

β2

v2
2τ − 1

]

ρ2 = −4P2Kxx

f 2

[
lim

v2τ →1

β2

v2
2τ − 1

]

v1τ = lim
v2τ →1

v1τ = 1 (34)

and the rest of the quantities defining streams are zero

β = 0, v1x = 0, v2x = 0, v1y = 0, v2y = 0.

Looking back at the stress energy tensor components (20) we
see that only Tττ stays nonzero which means that we need to
have Robinson–Trautman wormhole with only Sττ nonzero
(see (18)). This means that the function H is independent of x
and y, which translates (using (3)) into a Gaussian curvature
being constant implying spherical symmetry. Thus restricting
only one of the streams to being static automatically leads to
a spherically symmetric situation.

6.3 Perpendicular streams

Now we fix the mutual relation of the streams so that the
spatial components of their velocities are perpendicular with
respect to the induced metric on the throat. Namely, we select
the case when each stream has only one nonzero spatial com-
ponent of velocity in the frame of the throat. In this case, the
stress energy tensor components of these two fluids satisfy

(Tτ x )
2/Txx + (Tτ y)

2/Tyy = Tττ (35)

and the velocity components are specified completely (with
the single spatial component for each stream derived from
normalization condition (21)) by

v1τ = Kτ x√K2
τ x − γ 2

v2τ = Kτ y√
K2

τ y − γ 2
(36)

in which

γ = f 2Kττ − P2 Kxx

f P
.

The densities are unique as well

ρ1 = −2 P
(K2

τ x − γ 2
)

γ f

ρ2 = −
2 P

(
K2

τ y − γ 2
)

γ f
(37)

and using (24) their sign again depends only on Kxx and
is thus negative. This arrangement still covers the general
situation.

In the limit of both Kτ x and Kτ y going to zero we obtain

ρ1 = ρ2 = −2P2Kxx

f 2

v1τ = v2τ = 1 (38)

corresponding to spherically symmetric situation only.

7 Bulk electromagnetic fields

There is a simple generalization of the wormhole given above
to the case of Robinson–Trautman spacetimes with different
electromagnetic fields satisfying Maxwell and several non-
linear electromagnetic field equations given in [42]. Since
the general form of the metric for these spacetimes is the
following:

ds2 = −(2H + Q(u, r)) du2 − 2 du dr

+ r2

P2 (dy2 + dx2), (39)

with Q(u, r) encoding the effect of an electromagnetic field
one can use most of the previous calculations directly by
replacing the function H by H̃ = H + Q/2. The Darmois–
Israel formalism automatically provides the correct stress
energy tensor, compatible with the electromagnetic sources
created on the throat by the discontinuity in the electromag-
netic field.

As shown in the analysis of the existence of the horizon
[42] the sub- and super-solutions associated with the equa-
tion for the horizon provide bounds on the position of the
horizon in a similar way to the vacuum spacetime. Using
Qinf = infr∈(0,∞) [Q(u, r)] the upper bound now leads to
the following restriction on the position of the throat:

rhorizon ≤ 2m

Kmin + Qinf
≤ f. (40)

The sign of Kxx and subsequently the negativity of the energy
density for matter induced on the wormhole throat is now
determined by the quantity

K + Q

2
− m

f
(41)

generalizing (14). Using (40) one can easily prove its non-
negativity again leading to matter with nonpositive energy
density created on the throat. The asymptotic behavior for
u → ∞ was shown to lead to the corresponding spheri-
cally symmetric solutions which by the construction hold for
the thin-shell wormhole constructed using these solutions as
well.
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8 Higher dimensions

One of the key steps in proving (16) and subsequently the
negative mass density for the matter on the throat was the
observation concerning the bounds on position of the hori-
zon in 4-dimensional Robinson–Trautman spacetime. Those
bounds were derived with the horizon viewed as a deformed
sphere (with Gaussian curvature K = 1 for an exact sphere)
which is the consequence of both the topology restrictions
and the asymptotics of the Robinson–Trautman spacetime.
Since in higher dimensions it is possible to have an embed-
dable compact spatial hypersurface (of codimension 2) with
negative curvature this might provide a venue towards worm-
hole throats supported by matter with positive energy den-
sity. The higher-dimensional generalization of the Robinson–
Trautman family provides a suitable setting for such models
as we shall see below.

Robinson–Trautman spacetimes (possibly containing
aligned pure radiation and a cosmological constant Λ) in
any dimension were derived recently in [45] using the geo-
metric condition of possessing a nonshearing, nontwisting,
but expanding null geodesic congruence (similarly to the def-
inition of the 4-dimensional version of the spacetime [1,2]).
The form of the metric valid in D dimensions is similar to (1)

ds2 = r2

P2 γi j dxidx j − 2 dudr − 2H du2 (42)

with

2H = R
(D − 2)(D − 3)

− 2 r(ln P),u

− 2Λ

(D − 2)(D − 1)
r2 − μ(u)

r D−3 . (43)

The above metric is dependent on a unimodular spatial
(D − 2)-dimensional metric γi j (x), the function P(x, u)

and μ(u) is a “mass function” (we assume μ > 0). The
rescaled metric hi j = P−2γi j must satisfy the field equation
Ri j = R

D−2hi j . In D = 4 this is always satisfied and R
(the Ricci scalar of the metric h) generally depends on xi .
However, in D > 4 this restriction means R = R(u) and the
hi j is an Einstein space. Therefore in higher dimensions the
dynamical nature of the Robinson–Trautman family is lost
(the general algebraic type is just D). On the other hand, with
increasing dimensions there is a huge variety of possible spa-
tial metrics hi j (e.g., forR > 0 and 5 ≤ D−2 ≤ 9 an infinite
number of compact Einstein spaces were classified). The evo-
lution equation (corresponding to the Robinson–Trautman
equation (3)) is much simpler in higher dimensions,

(D − 1) μ (ln P),u − μ,u = 16πn2

D − 2
, (44)

where the function n describes the possible aligned pure radi-
ation.

For the simplicity of exposition we will restrict ourselves
to the vacuum case with n = 0 and Λ = 0. Using the
reparametrization freedom of coordinate u explained in [45]
we can put μ to a constant and from (44) we conclude that P is
independent of u as well and necessarily R = const., which
means that the Einstein spaces given by hi j have the same
scalar curvature for all u. The condition of being Einstein
is restrictive in dimension 3 since it automatically means a
constant sectional curvature. It provides certain topological
restrictions in dimension 4 as well – e.g. the Thorpe’s theorem
which restricts the manifold’s characteristic [53,54]. How-
ever, in dimension 5 and higher it is not even clear if an arbi-
trary manifold admits an Einstein metric. At the same time
in these dimensions there are no known restrictions coming
from the sign of the Ricci scalar and, e.g., for any dimension
4k (k ≥ 2) there exist manifolds carrying Einstein metrics
of both signs – a theorem of Catanese and LeBrun [54]. We
are also in need of a compactness which brings about some
restrictions but their full extent is not known. If one restricts
oneself to manifolds with constant negative sectional curva-
ture (which are automatically Einstein) the standard exam-
ples are compact hyperbolic manifolds of arithmetic type, i.e.
those arising from factorization of semisimple Lie groups by
a discrete subgroup with a certain property [54].

Now the question is if the negative scalar curvature of
the D − 2-dimensional Einstein space with metric hi j pro-
vides the possibility to have a positive energy supporting the
throat. Let us again consider gluing of two copies along the
hypersurface given by r = f (u). Using the formula for the
induced stress energy tensor (17) together with a straightfor-
ward generalization of quantities describing the embedding
(a, b, c are indices in the full spacetime, while i, j, k are
reserved for transversal D − 2-space with metrics h or γ ),

nadxa = −ε f,udu + ε dr, ∂τ = ε ∂u + ε f,u∂r , (45)

we obtain the following expression for the component pro-
portional to the density:

Sττ = −2
P2

r2 γ i j Ki j . (46)

Using the definition (6) of the extrinsic curvature, which is
valid in higher dimensions as well, we obtain

Ki j = r

P2

2H + f,u√
2H + 2 f,u

γi j . (47)

So finally we get

Sττ = −(D − 2)
2H + f,u√
2H + 2 f,u

1

r
. (48)

If we want the overall density to be positive and the square
root in the denominator defined we need to satisfy the fol-
lowing inequalities:

2H + f,u < 0 < H + f,u, (49)
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which imply

− H < f,u < −2H. (50)

Such a condition means that H has to be negative. If the Ricci
scalar R of the transversal D − 2-space would be positive
then it is possible to use bounds on the position of the horizon
derived from sub- and super-solutions in [40] to show that
above the horizon H is positive, so the condition (50) can
never be satisfied and therefore again the energy density on
the throat is negative as in the 4-dimensional case.

But in higher dimensions we are presented with the pos-
sibility to have compact section of the throat hypersurface
with negative Ricci scalar as discussed above. Returning to
the results of [40] it was not possible to find the horizon
in such a case using the techniques therein. If one would
assume the horizon to have exactly the same geometry as the
transversal spaces (on each u = const hypersurface), then the
equation for the horizon derived in [40] (with the position of
the horizon given by r = R(u, xi )),

R − 2(D−3)
D−1 ΛR2 − (D−2)(D−3)

μ

RD−3 −2(D−3)Δ(ln R)

− (D−4)(D−3) h(∇ ln R,∇ ln R) = 0, (51)

can be used to show that there cannot be any solution for
R < 0 (since restricting the horizon to have the geometry of
the transversal spaces means r = R(u)). This indicates that
the restriction on the sign of H , which was previously coming
from the demand that the throat is above the position of the
horizon, is removed because the spacetime might not have a
horizon at all. Anyway, no matter what the additional effects
of negative scalar curvature are, we can easily see from (43)
that, for the case under consideration (μ = const > 0, Λ = 0
and P(xi )), we have H < 0 everywhere in spacetime. We can
start with the value f (u0) on the initial hypersurface u = u0

above any possible horizon; then the condition (50) ensures
that the position of the throat is increasing since f,u > 0.
If the wormhole should be of any use the complete hyper-
surface of its throat must be timelike, which we ensured by
the normalization of na . Now we can use the constraint (50)
to understand the possible values of gradient of the throat
hypersurface Na = ∇a[r − f (u)] obtaining

0 < gabNaNb < −2H. (52)

This means that depending on the choice of f (u) (satisfying
the bounds (50) of course) we can approach an almost null
hypersurface throat but generically it stays timelike.

8.1 Calabi–Yau wormholes

So far we neglected the case whereR = 0. By inspecting [40]
we realize that the discussion of the R < 0 case given in the
last paragraph still applies here. Namely the condition H < 0
is met in this case as well and (50) can be satisfied. This

presents us with one well-known family of geometries for our
D − 2-dimensional transversal space which coincides with
the geometry of the throat. These are the so-called Calabi–
Yau spaces, which are usually defined as compact Kähler
manifolds (manifolds which can be equipped with an almost-
complex structure compatible with a symplectic form) with
a vanishing first Chern class (topological invariant related to
the vector bundles over the given manifold) and a Ricci flat
metric (Rab = 0 ⇒ R = 0) [55]. In complex dimension two
the simply connected ones are known as K3 surfaces. In the
case of complex dimension three it is conjectured that there is
a finite number of families of Calabi–Yau manifolds. These
are especially important for string theory compactification
program [56]; however, here we are not suggesting that the
wormhole throats are in any way related to these issues. There
are known examples of Ricci flat manifolds in odd dimension
as well – e.g. the G2 manifold whose holonomy group is con-
tained within the G2 group and admits a spin structure [55].

9 Conclusion and final remarks

We have presented a construction of thin-shell wormhole
spacetime using cutting and gluing Robinson–Trautman
spacetime. Due to this construction such a wormhole is
dynamical and has no symmetries. Asymptotically the throat
settles to the position of a Schwarzschild horizon correspond-
ing to the final state of evolution in the considered Robinson–
Trautman geometry. This result is in agreement with one
branch of behavior for non-thin-shell wormholes with only
spherical perturbations allowed [57]. Note that due to the
behavior of the Robinson–Trautman family mentioned in
the introduction we cannot generally extend the wormhole
to negative infinite retarded time. The stress energy tensor
induced on the wormhole throat by the gluing is interpreted
in terms of two perfect fluids. It is shown that the densities of
these fluids are necessarily negative. Apart from two general
streams moving on the throat we consider also one of the
streams to be static and the case where the streams are mutu-
ally perpendicular which fixes all the freedom of the model.

The asymptotic behavior of the constructed wormhole can
be used to establish a nonlinear stability of the Schwarzschild
wormhole within the Robinson–Trautman class of geome-
tries.

The asymptotic behavior of our wormhole is completely
analogous to that of the standard Robinson–Trautman space-
time with singularity and horizon. The corresponding grav-
itational radiation (see the Weyl scalar Ψ4 (A.2) in the
appendix) which is given by the metric function P (note
that K = Δ ln P) is then identical for our wormhole and
the corresponding standard Robinson–Trautman metric thus
confirming the results of [48] on nonperturbative level.
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The results were shown to be easily generalized to the case
of Robinson–Trautman solutions with bulk electromagnetic
field of a Maxwell type or satisfying field equations of sev-
eral models of nonlinear electrodynamics. Finally, we have
used the higher-dimensional generalization of the Robinson–
Trautman solution to create wormholes with induced matter
of positive energy density with several throat geometries.
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Appendix A: Weyl scalars

Here we present the Weyl scalars corresponding to metric (1)
using the frame (where i is a complex unit)

k = ∂r , l = ∂u − H∂r , m = P√
2r

(∂x + i∂y). (A.1)

The only nonzero components of the Weyl spinor (corre-
sponding to algebraic type II spacetime) are the following:

Ψ2 = −m

r3 ,

Ψ3 = −
√

2P

4r2 (K,x − i K,y),

Ψ4 = 1

4r2

[{
P2(K̃,x − i K̃,y)

}
,x

− i
{
P2(K̃,x − i K̃,y)

}
,y

]
.

(A.2)

where K̃ = K − 2r(ln P),u .
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